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Abslrset. A non-linear vibration of the stretch of hydrogen bonds has been studied theor- 
etically. We have used the potential V(r)  = Arz - Br', where A and B are wnstants, to 
describe approximately the H-bond energy. We have obtained analytical solutions of the 
motion equation for a particle moving in this potential field. The theoretical results have 
been applied to some realistic physia systems, including water molecules, the DNA double 
helix and the o-helix protein. It is shown that the calculated vibration frequencies are in 
agreement with experimental data observed by the Raman scattering and other techniques. 
The asymmetry of the H-bond energy is also discussed. 

1. Introduction 

The importance of hydrogen bonds in the conformational stability of biological macro- 
molecules is widely recognized. The H bond is also a-key factor in keeping water in a 
liquid state at normal temperature. The vibration modes of the H-bond stretch in the 
molecules mentioned above have been observed in many experiments. The linear 
vibration theory of the H-bond stretch has been studied frequently (see, e.g., [1,2]). 
However, the H bond is essentially non-linear. So far as we know, the theory of non- 
linear vibration of the H-bond stretch has not yet been studied sufficiently. It is the aim 
of this paper to perform such a study. To do this, it is important to use a suitable form 
of the H-bond potential. Up to now, three forms of the potential have been frequently 
used to describe the H-bond energy. They are 

(i) the Toda lattice potential V(r)  = a[exp( -br) - l]/b + ar, where a = 
0.31 eV A-', b = 4.0 k' [MI, 

(ii) the Lennard-Jones potential V(r)  = 4&[(u/R)'* - ( u / R ) ~ ] ,  where E = 0.22 eV, 
U = 4.01 8, andR = 4.508, + r [ 7 ]  and 

(iii) the 2-3-power potential V(r)  = Ar2- Br', where A = 0.62 eV k2 and B = 
0.83 eV 8,-'[8]. 

It should be noted that the three potential forms are all approximate in describing 
the H bond. If we expand the Toda and Lennard-Jones potentials into a Taylor series 
with respect to r ,  we find that the first and second terms are exactly the same as a 2-3- 
power potential. Therefore, in order to simplify the theoretical study, it is reasonable 
to study the 2-3-power potential first in this paper. 
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Figure 1. The curve of V(r )  = Aii - 81'. with A = 0.62 eV A-' and B = 0.83 eV A-] 

This paper is organized as follows. In section 2 the 2-3-power potential is studied in 
some detail. In section 3 the theory of non-linear stretch vibration of the H bond is 
established. Then the application of the theoretical results to some realistic physics 
systems including water molecules, the DNA double helix and the cu-helix protein is 
performed in section 4. In the last section, section 5, some discussion is given and 
conclusions are drawn. 

2. The study of the 2-3-power potential form of the H bond 

When studying the molecular mechanism in the process of muscle contraction, Yomosa 
[8] used the 2-3-power potential V(r)  = Ar2-Br3 to describe the H-bondenergyapproxi- 
mately. This form of the potential really reflects some of the main character of the H 
bonds. For example, we may use this potential to explain some of the character of liquid 
water molecules. An H bond exists between the oxygen atom of one H,O molecule and 
the hydrogen atom of another H,O molecule. Let the displacement of the hydrogen 
atom from its equilibrium position along the direction of the H bond be denoted by r. If 
the hydrogen atom is far from the oxygen atom, r is positive; otherwise, it is negative. 

The curve of V(r)  is shown in figure 1. There are two points, r = 0 and r = r, = 2A/ 
3 8  satisfying dV(r)/dr = 0. When r < r,, the curve conforms to the real H bond very 
well. When r > r,, theupper brokencurverepresentstherealH-hondenergy. However, 
in the vicinity of r,, the H bond has been broken. So only when r < r, is the 2-3-power 
potential valid. 

Let us imagine that there is a particle with mass m moving in this potential field. At 
the point r = r,, its potential energy is V(rJ = h, = 4A3/27B2. When its total energy h 
is less than h,, there are three points, r = e , ,  r = e2 and r = e3 which satisfy V(r)  = h ,  
where e, > r,, 0 < e2 < r, and e3 < 0 (see figure 1). In this discussion we neglect the range 
r > r,. The particle will vibrate between the points e3 and e2. From the shape of the 
curve, we see that e2 > le31. This may explain why the H bonds are easier to extend than 
to compress. We define le2/e31 as the extension-compression ratio (ECR). Since the ECR 
is greater than unity, this implies that the existence of the H bonds is an important reason 
why it needs more energy to compress liquid water than to expand it. We thus explain 
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qualitatively the incompressibility of liquid water and some biological macromolecules 
by the 2-3-power potential of the H bond. 

3. Theory of non-linear stretch vibration of the H bond 

Inthissection,weshallstudythemotionofaparticlc withmassm (theparticleisdenoted 
by m hereafter) moving in this potential field. The following two cases will be studied 
later. 

3.1. Hurmonic uibration 

When the energy is very small, m will oscillate in the vicinity of the point r = 0. In this 
condition, the potential can be reduced to V(r) =A?. The equation of motion can be 
written as 

d ‘r/dt2 = - w2r (3.1) 
where w 2  = 2A/m. The solution of equation (3.1) is 

r = L cos(wt) (3.2) 
where w is the frequency of the harmonic vibration, L is the amplitude and we have 
assumed that the initial phase of this motion is zero. 

3.2. Non-linear uibration 

When the energy h is neither very small nor larger than h,, the non-linear term r3 of V(r) 
cannot be neglected. In this case, we have 

V(r) = Ar2 - Br3 - (3.3) 
and the Hamiltonian of the system is 

H = Im(dr/dt)2 + Ar2 - Br3. (3.4) 
The corresponding equation of motion is 

md2r/dtZ+2Ar-3Br2 = O  (3.5) 
Integrating (3.5) and letting 2A/m = w2,  B/m = Q, we obtain 

(drldt)’ = -w2r2 + 2Qr’ + 2QC (3.6) 
where Cis an integral constant and d\/2eC is the velocity of m at the position r = 0. The 
total energy of m can be written as 

h = Im(2QC) = BC. (3.7) 

0 < BC < 4A3/27B2 or 0 < C <  4A3/27B3. (3.8) 

Then, we have 

The particle m will vibrate periodically, but its solution of motion is not simply a sine 
or cosine function. 

Let R(r) = - w2rz + 2Qr3 + 2QC. Under the condition (3.8). the equation 
R(r) = 0 has three real roots. They are Y = e,, r = e2 and r = e3, where e, > e, > e3 ,  and 
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we have mentioned that e ,  > r,, 0 < e2 < r, and e,  < 0. The particle m will move in the 
ranger E [e,, e*]. 
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Expanding the equation R(r) = (r - el)(. - e2)(r - e,) ,  we get 

e ,  + e2 + e ,  = 0 2 / 2 Q  = A / B  

ele2 + ele ,  + e2e3 = 0 

(3.9a) 

(3.9b) 

ele2e3 = - C. (3.9c) 

Integrating equation (3.6) and assuming that, when t = r,,, the particle is at the 
position r = e,, we have 

d r  
v r 3  - (w2/2Q)r2 + C = 1‘ m d t  r E  [e3 ,e2] .  (3.10) 

10 e3 

Let 

r = e3 + ( e2  - e3)u U E [O,  11. 

Substituting (3.11) into (3.10) and introducing 

k2 = (e2 - ed/(el - e , )  k E (0,1) 

we get another corresponding integral equation 

d u  
= 1‘ v ( B / 2 m ) ( e l  - e 3 )  d t  

~ n u ~ ( l - u 2 ) ( l - k 2 ~ 2 )  IO 

(3.11) 

(3.12) 

(3.13) 

where we have already considered that Q = B / m .  The solution of equation (3.13) can 
be expressed in terms of a Jacobian elliptic function with the mode k:  

U = s n [ v ( B / 2 m ) ( e l  - e 3 )  ( r - t , , ) ;  k 2  = ( e2  - e 3 ) / ( e ,  -e3)] .  (3.14) 

Then 

r =  e3+(e2-e3)sn2  [ v ( B / 2 m ) ( e l  - e 3 ) ( r - t 0 ) ; k 2  = (e2-e3)/(el - e 3 ) ] .  (3.15) 

In order to facilitate the following computations, we introduce the dimensionless 
quantities 

e; = (B/A)e i  (i = 1 , 2 , 3 )  h’ = (B2/A’)h 1’ = t .  (3.16) 

According to (3.9a)-(3.9c) and (3.12), we obtain the following expressions: 

e;  = [l  - (2  - k 2 ) e i ] / ( l  + k 2 )  (3.17a) 

e; = [ k 2  + ( 1  - 2k2)e;] / ( l  + k 2 )  

e; = f [ l  - vl + kZ + k6 + k 8 / ( 1  - k 2  + k 4 ) ]  

(3.17b) 

( 3 . 1 7 ~ )  

h’ = - eleie;. (3.18) 

These formulae reveal the relations between h ,  k 2  and (el, e*, e,) 
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We know that the period of the function sn U is 4K, and the period of sn2 U is 2K, 
where K is the total elliptic integral: 

1 du 
= lo v ( 1  - u')(l - k2u2)' (3.19) 

When k < 1, K can be expanded with respect to k2: 

K = (n/2)(l + k2/4 + 9k4/&4 + . . .) = n/2 + O(k2). (3.20) 

When kZ < 0.04 (or h < 4 X 10-4A'/B2), the terms in O(kZ) can be neglected, i.e. K = 
n/2. Under this condition, according to the properties of sn U, we have sn u- sin U, 
el  Se, ,  e2+ O', e3+ 0- and e ,  = -e3. Equation (3.15) reduces to the following form: 

r = (e2 + e3)/2 - (e2 - e3)/2 cos[~(2B/m)(el -e3) ( t -  to)]  

= - e ,  cos[w(t - to ) ]  (3.21) 

where we have used B = A/(el + e,  + e3) and w2 = 2A/m. We can see that (3.21) is just 
consistent with (3.2). 

In short, the particle m will vibrate harmonically in the vicinity of r = 0 when k - t  0 
(here we consider k2 < 0.04); when k2 > 0.04 and the energy h is not large enough to 
break the H bond, the particle will vibrate anharmonically. 

4. Application to some realistic physics systems 

We have mentioned that the H bond occurs frequently in nature as a form of binding 
energy. It is the H bonds that join water molecules together and make the H 2 0  exist in 
a liquid state rather than in a gaseous state at normal temperatures. In the DNA double- 
helix chain, there are two H bonds between an adenine-thymine base pair and three H 
bonds between a guanine-cytosine base pair. The stretch of the H bonds may be an 
important reason for the existence of open states in DNA. In a superstructure of myosin 
molecules, there are two a-helical polypeptides, and in each helix there are three one- 
dimensional chains of peptide groups joined together by H bonds which stabilize the a- 
helix structure. 

In this section, we shall study the vibrational properties of the H bonds in the three 
cases mentioned above. 

First, we expand the solution (3.15) into a Fourier series 

r = A. + A l  cos[(n/K)v(B/2m)(el - e3)(t - to ) ]  

+ A, cos[(2n/K)~(B/2m)(el - e3)(t - to ) ]  + . . . 
where 

(4.24 

(4.26) 
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Tnbk 1. The ranges of the fundamental frequencies for the three molecules. 

0,  ut 
( 1 0 1 3 ~ - 1 )  (cm-’) 

H,O 7.08-10.9 376578 
DNA 0.40W.621 21-33 
n-helix protein 0.66>1.02 35-54 

- ( 4 2 )  qZf3 
,=o (1 -qZ‘+5)(1 - q Z + 1 )  (1 

where the relation between q and k is 

k Z = 1 6 q ( l + q 2 + q 6 + . .  . ) ‘ / ( I + 2 q + 2 q 4 + . .  .)‘. (4.3) 

w ,  = (n/K)d(E/2m)(el - e3) = w ;  (4.4) 

w ;  = ( n / K ) m .  (4.5) 

The fundamental frequency of the system is 

where 

The relation between wI and the energy h is shown in figure 2. When h is larger than 
0.14A3/EZ (i.e. his close to he), the curve drops down quickly. We think that the system 
will be unstable when h-, h,. In fact, the 2-3-power potential does not conform to the 
real H-bond energy in the vicinity of the point r,. So we shall only consider the range - 

the coiresponding frequency range w, E 
, ,  ’ 

The coefficients A and E have been estimated in [SI: 

A = 0.62 eV k2 B = 0 .83eVk’ .  (4.6) 

rc = 2A/3B = 0.5 8, 

so 

h, = 4A3/27Ez = 0.051 eV. (4.7) 

That is to say, when the energy of m is larger than 0.051 eV (or the corresponding 
displacement is larger than 0.5 A), the H bond will be broken. 

In table I ,  we list the fundamental frequency ranges and the corresponding ranges 
of the wavenumber 17, of H-bond vibrations in water, DNA and e-helix protein. Where 
the mass mp of the hydrogen proton in water is 1.6726 x IO-*’ kg, the average mass of 
bases in DNA is 308m, and the average mass of a small unit cell in a-helix protein is 
114mp. 

The frequency values that we have obtained all belong to the range of infrared 
absorption. We know that the vibration modes of H-bond stretch in E-DNA at 10-120 
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Figure 2. The curve describing the fundamental frequency as a function of energy. 
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Ngure 3. The curve describing the ECR as a function of energy. 

cm-I have been observed in both low-frequency Raman scattering [9,10] and Fourier- 
transform infrared absorption [ll]. The laser Raman measurements on living cells 
published by Webb [12] indicated that there exist small Raman shifts of 0-200 cn-’ in 
a-helix proteins. It is seen that our results are exactly within these ranges. In particular, 
our calculated range of the vibration frequencies in DNA includes the value of 30 cm-’ 
which has been observed to occur in Raman scattering by Painter ef a1 [lo]. We think 
that the anharmonicity in the stretch of the H bonds plays a major role in explaining the 
Raman shifts observed in experiments on biological macromolecules. 

5. Discussion and conclusions 

We have already mentioned that the ECR defined in section 2 reveals the asymmetry of 
the curve of H-bond energy (figure 3). The higher the energy, the larger is the ratio. 
When the energy approaches h,, the ratio is close to 2. That is to say, with the same 
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Table 2. The ranges oithe secondary frequencies for the three molecules 

H2O 14.1-19.6 751-1040 
DNA 0.807-1.12 42-60 
o-helix protein 1.32-1.84 7&97 

energy h,, the distance that the particle is pulled out of its equilibrium position is twice 
that when it is compressed inwards. Therefore, the H bond is easier to extend than to 
compress. In the case of liquid water, this implies that the incompressibility of water is 
closely related to the character of the H bonds. For the same reason it is difficult to 
compress the a-helix protein along the helical axis. Similarly, the diameter of the DNA 
double helix is about 20 A; it is also difficult to reduce this value, 

We know that the Lennard-Jones potential is more suitable for describing the H 
bond in the whole range R E (0, m) than are the Toda and 2-3-power potentials. We 
assume that the particle m is moving in the Lennard-Jones potential field. When r = 
e2 = 0.5 A,wehaveq = -0.28 A. Inthiscase,le,/e,l = 1.8. Thisvalueisapproximately 
equal to the corresponding value in the case of the 2-3-power potential. It seems that 
our conclusionon theincompressibility oftheliquid water isindependent ofthe potential 
that we use. We can reach a similar conclusion for the three potentials mentioned 
above. Consequently, the non-linearity of the H-bond potential is a key factor in the 
incompressibility of the water. 

In section 4, we have calculated the ranges of fundamental frequencies in the case of 
water, DNA and a-helix protein. However, we have not considered the secondary 
frequencies et When the energy h = 0.08A3/B2, we have q = 0.05, A,  = 0.29 A and 
A2 = 0.025 w. A, is about 10% of Al .  So, in the case of h > 0.08A3/B2, the secondary 
frequency w 2  = 2w, cannot be neglected. 

In table 2, we list the ranges of w 2  (and its corresponding wavenumber f i 2 )  for the 
three cases. These values also belong to the ranges of low-frequency Raman shifts which 
we mentioned in section 4. 

We have only considered the stretch vibrations of a single H bond in this paper. In 
fact, it is the pure ideal case. It must be noted that real cases are much more complicated. 
Many H bonds exist in liquid water. These H bonds interact with each other and form 
many H-bond networks. The number of H bonds in one H-bond network is different 
from that in another network, and the number varies with conditions such as the 
temperature. In DNA and a-helix proteins, the stacking energy and other interactions 
also affect the vibrations of H bonds. It is difficult to calculate the vibration frequencies 
of H bonds in real cases, and the methods of statistics are required to achieve this. We 
shall not carry out any further calculations here. 

In conclusion, we have used the 2-3-power potential to describe the H-bond energy 
approximately and have calculated the frequency ranges of the stretch vibration of H 
bonds, which are consistent with the observed values. Further experimental data are 
needed in order to examine the theory presented here. 
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